and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
and: {1, 2}
tt: empty set
isNatIList: empty set
isNatList: empty set
isNat: empty set
0: empty set
s: {1}
length: {1}
zeros: empty set
cons: {1}
nil: empty set
take: {1, 2}
uTake1: {1}
uTake2: {1}
uLength: {1}
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
and: {1, 2}
tt: empty set
isNatIList: empty set
isNatList: empty set
isNat: empty set
0: empty set
s: {1}
length: {1}
zeros: empty set
cons: {1}
nil: empty set
take: {1, 2}
uTake1: {1}
uTake2: {1}
uLength: {1}
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNATILIST(IL) → ISNATLIST(IL)
ISNAT(s(N)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNATILIST(cons(N, IL)) → AND(isNat(N), isNatIList(IL))
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
ISNATLIST(cons(N, L)) → AND(isNat(N), isNatList(L))
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATLIST(take(N, IL)) → AND(isNat(N), isNatIList(IL))
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
TAKE(0, IL) → UTAKE1(isNatIList(IL))
TAKE(0, IL) → ISNATILIST(IL)
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
TAKE(s(M), cons(N, IL)) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
TAKE(s(M), cons(N, IL)) → ISNAT(M)
TAKE(s(M), cons(N, IL)) → AND(isNat(N), isNatIList(IL))
TAKE(s(M), cons(N, IL)) → ISNAT(N)
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
LENGTH(cons(N, L)) → AND(isNat(N), isNatList(L))
LENGTH(cons(N, L)) → ISNAT(N)
LENGTH(cons(N, L)) → ISNATLIST(L)
ULENGTH(tt, L) → LENGTH(L)
UTAKE2(tt, M, N, IL) → N
ULENGTH(tt, L) → L
zeros
take(M, IL)
take on positions {1, 2}
UTAKE2(tt, M, N, IL) → U(N)
ULENGTH(tt, L) → U(L)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(zeros) → ZEROS
U(take(M, IL)) → TAKE(M, IL)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNAT(s(N)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
and(tt, x0) → x0
isNatIList(x0) → isNatList(x0)
isNat(0) → tt
isNat(s(x0)) → isNat(x0)
isNat(length(x0)) → isNatList(x0)
isNatIList(zeros) → tt
isNatIList(cons(x0, x1)) → and(isNat(x0), isNatIList(x1))
isNatList(nil) → tt
isNatList(cons(x0, x1)) → and(isNat(x0), isNatList(x1))
isNatList(take(x0, x1)) → and(isNat(x0), isNatIList(x1))
zeros → cons(0, zeros)
take(0, x0) → uTake1(isNatIList(x0))
uTake1(tt) → nil
take(s(x0), cons(x1, x2)) → uTake2(and(isNat(x0), and(isNat(x1), isNatIList(x2))), x0, x1, x2)
uTake2(tt, x0, x1, x2) → cons(x1, take(x0, x2))
length(cons(x0, x1)) → uLength(and(isNat(x0), isNatList(x1)), x1)
uLength(tt, x0) → s(length(x0))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNAT(s(N)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 1 + 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2
POL(length(x1)) = 2 + 2·x1
POL(s(x1)) = 2 + 2·x1
POL(take(x1, x2)) = 1 + x1 + 2·x2
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNAT(s(N)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSUsableRulesProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
UTAKE2(tt, M, N, IL) → U(N)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(take(M, IL)) → TAKE(M, IL)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(take(M, IL)) → TAKE(M, IL)
Used ordering: Combined order from the following AFS and order.
UTAKE2(tt, M, N, IL) → U(N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
UTAKE2(tt, M, N, IL) → U(N)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ULENGTH(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDP
↳ ConvertedToQDPProblemProof
↳ QDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ULENGTH(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ Trivial-Transformation
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → UTAKE2ACTIVE(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
MARK(take(x1, x2)) → MARK(x2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(uTake2(x1, x2, x3, x4)) → UTAKE2ACTIVE(mark(x1), x2, x3, x4)
MARK(cons(x1, x2)) → MARK(x1)
MARK(uTake1(x1)) → UTAKE1ACTIVE(mark(x1))
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(zeros) → ZEROSACTIVE
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, T) → MARK(T)
UTAKE2ACTIVE(tt, M, N, IL) → MARK(N)
MARK(uTake2(x1, x2, x3, x4)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
TAKEACTIVE(0, IL) → UTAKE1ACTIVE(isNatIListActive(IL))
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL)))
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(M)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(uLength(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(uTake1(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → UTAKE2ACTIVE(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
MARK(take(x1, x2)) → MARK(x2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(uTake2(x1, x2, x3, x4)) → UTAKE2ACTIVE(mark(x1), x2, x3, x4)
MARK(cons(x1, x2)) → MARK(x1)
MARK(uTake1(x1)) → UTAKE1ACTIVE(mark(x1))
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(zeros) → ZEROSACTIVE
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, T) → MARK(T)
UTAKE2ACTIVE(tt, M, N, IL) → MARK(N)
MARK(uTake2(x1, x2, x3, x4)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
TAKEACTIVE(0, IL) → UTAKE1ACTIVE(isNatIListActive(IL))
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL)))
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(M)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(uLength(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(uTake1(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
TAKEACTIVE(s(M), cons(N, IL)) → UTAKE2ACTIVE(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
MARK(take(x1, x2)) → MARK(x2)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(uTake2(x1, x2, x3, x4)) → UTAKE2ACTIVE(mark(x1), x2, x3, x4)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, T) → MARK(T)
UTAKE2ACTIVE(tt, M, N, IL) → MARK(N)
MARK(uTake2(x1, x2, x3, x4)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL)))
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(M)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(uLength(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(uTake1(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → UTAKE2ACTIVE(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
MARK(take(x1, x2)) → MARK(x2)
MARK(uTake2(x1, x2, x3, x4)) → UTAKE2ACTIVE(mark(x1), x2, x3, x4)
MARK(uTake2(x1, x2, x3, x4)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL)))
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(M)
TAKEACTIVE(s(M), cons(N, IL)) → ISNATACTIVE(N)
MARK(uTake1(x1)) → MARK(x1)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
Used ordering: Polynomial interpretation [25]:
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, T) → MARK(T)
UTAKE2ACTIVE(tt, M, N, IL) → MARK(N)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(uLength(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = 0
POL(ISNATILISTACTIVE(x1)) = 0
POL(ISNATLISTACTIVE(x1)) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(TAKEACTIVE(x1, x2)) = 1 + x2
POL(ULENGTHACTIVE(x1, x2)) = x2
POL(UTAKE2ACTIVE(x1, x2, x3, x4)) = x3
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x1 + x2
POL(uLengthActive(x1, x2)) = x1 + x2
POL(uTake1(x1)) = 1 + x1
POL(uTake1Active(x1)) = 1 + x1
POL(uTake2(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(length(x1)) → MARK(x1)
UTAKE2ACTIVE(tt, M, N, IL) → MARK(N)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(uLength(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → MARK(L)
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(uLength(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(length(x1)) → MARK(x1)
MARK(uLength(x1, x2)) → ULENGTHACTIVE(mark(x1), x2)
MARK(uLength(x1, x2)) → MARK(x1)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = 0
POL(ISNATILISTACTIVE(x1)) = 0
POL(ISNATLISTACTIVE(x1)) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(ULENGTHACTIVE(x1, x2)) = x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x2
POL(takeActive(x1, x2)) = x2
POL(tt) = 0
POL(uLength(x1, x2)) = 1 + x1 + x2
POL(uLengthActive(x1, x2)) = 1 + x1 + x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
LENGTHACTIVE(cons(N, L)) → ISNATACTIVE(N)
ULENGTHACTIVE(tt, L) → MARK(L)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATLISTACTIVE(take(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(take(N, IL)) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(N, IL)) → ISNATACTIVE(N)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = x1
POL(ISNATILISTACTIVE(x1)) = x1
POL(ISNATLISTACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x2
POL(uLengthActive(x1, x2)) = x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
MARK(cons(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(cons(x1, x2)) → MARK(x1)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = 0
POL(ISNATILISTACTIVE(x1)) = 0
POL(ISNATLISTACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x1
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x2
POL(takeActive(x1, x2)) = 1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uLengthActive(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1 + x3
POL(uTake2Active(x1, x2, x3, x4)) = 1 + x3
POL(zeros) = 1
POL(zerosActive) = 1
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATILISTACTIVE(IL) → ISNATLISTACTIVE(IL)
ISNATILISTACTIVE(cons(N, IL)) → ISNATACTIVE(N)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = x1
POL(ISNATILISTACTIVE(x1)) = 1 + x1
POL(ISNATLISTACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatIListActive(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x2
POL(uLengthActive(x1, x2)) = x2
POL(uTake1(x1)) = x1
POL(uTake1Active(x1)) = x1
POL(uTake2(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATACTIVE(length(L)) → ISNATLISTACTIVE(L)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATACTIVE(x1)) = x1
POL(ISNATILISTACTIVE(x1)) = x1
POL(ISNATLISTACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(takeActive(x1, x2)) = x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = 1 + x2
POL(uLengthActive(x1, x2)) = 1 + x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
ISNATLISTACTIVE(cons(N, L)) → ISNATACTIVE(N)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(isNat(x1)) → ISNATACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
ISNATACTIVE(s(N)) → ISNATACTIVE(N)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(N, IL)) → ANDACTIVE(isNatActive(N), isNatIListActive(IL))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
MARK(and(x1, x2)) → MARK(x2)
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
ISNATILISTACTIVE(cons(x0, y1)) → ANDACTIVE(isNat(x0), isNatIListActive(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(x0, y1)) → ANDACTIVE(isNat(x0), isNatIListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), mark(x2))
MARK(and(x1, x2)) → MARK(x1)
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(zeros, y1)) → ANDACTIVE(zerosActive, mark(y1))
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(nil, y1)) → ANDACTIVE(nil, mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(0, y1)) → ANDACTIVE(0, mark(y1))
MARK(and(cons(x0, x1), y1)) → ANDACTIVE(cons(mark(x0), x1), mark(y1))
MARK(and(s(x0), y1)) → ANDACTIVE(s(mark(x0)), mark(y1))
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(zeros, y1)) → ANDACTIVE(zerosActive, mark(y1))
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(nil, y1)) → ANDACTIVE(nil, mark(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(s(x0), y1)) → ANDACTIVE(s(mark(x0)), mark(y1))
MARK(and(cons(x0, x1), y1)) → ANDACTIVE(cons(mark(x0), x1), mark(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(0, y1)) → ANDACTIVE(0, mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(zeros, y1)) → ANDACTIVE(zerosActive, mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATLISTACTIVE(cons(N, L)) → ANDACTIVE(isNatActive(N), isNatListActive(L))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ANDACTIVE(tt, T) → MARK(T)
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
ISNATLISTACTIVE(cons(x0, y1)) → ANDACTIVE(isNat(x0), isNatListActive(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(zeros, y1)) → ANDACTIVE(zerosActive, mark(y1))
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
ISNATLISTACTIVE(cons(x0, y1)) → ANDACTIVE(isNat(x0), isNatListActive(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(zeros, y1)) → ANDACTIVE(zerosActive, mark(y1))
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
MARK(and(zeros, y0)) → ANDACTIVE(cons(0, zeros), mark(y0))
MARK(and(zeros, y0)) → ANDACTIVE(zeros, mark(y0))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(zeros, y0)) → ANDACTIVE(cons(0, zeros), mark(y0))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(zeros, y0)) → ANDACTIVE(zeros, mark(y0))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(take(x0, x1), y1)) → ANDACTIVE(takeActive(mark(x0), mark(x1)), mark(y1))
Used ordering: Polynomial interpretation [25]:
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ANDACTIVE(tt, T) → MARK(T)
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATILISTACTIVE(x1)) = 0
POL(ISNATLISTACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1
POL(takeActive(x1, x2)) = 1
POL(tt) = 0
POL(uLength(x1, x2)) = 0
POL(uLengthActive(x1, x2)) = 0
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(uTake2Active(x1, x2, x3, x4)) = 0
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(uTake1(x0), y1)) → ANDACTIVE(uTake1Active(mark(x0)), mark(y1))
MARK(and(uTake2(x0, x1, x2, x3), y1)) → ANDACTIVE(uTake2Active(mark(x0), x1, x2, x3), mark(y1))
Used ordering: Polynomial interpretation [25]:
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x1
POL(ISNATILISTACTIVE(x1)) = 1
POL(ISNATLISTACTIVE(x1)) = 1
POL(MARK(x1)) = 1
POL(and(x1, x2)) = 0
POL(andActive(x1, x2)) = 1
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 1
POL(isNatIList(x1)) = 1
POL(isNatIListActive(x1)) = 1
POL(isNatList(x1)) = 1
POL(isNatListActive(x1)) = 1
POL(length(x1)) = 1
POL(lengthActive(x1)) = 1
POL(mark(x1)) = 1
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(takeActive(x1, x2)) = 0
POL(tt) = 1
POL(uLength(x1, x2)) = x1
POL(uLengthActive(x1, x2)) = x1
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(uTake2Active(x1, x2, x3, x4)) = 0
POL(zeros) = 0
POL(zerosActive) = 1
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(length(x0), y1)) → ANDACTIVE(lengthActive(mark(x0)), mark(y1))
MARK(and(uLength(x0, x1), y1)) → ANDACTIVE(uLengthActive(mark(x0), x1), mark(y1))
Used ordering: Polynomial interpretation [25]:
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATILISTACTIVE(x1)) = 0
POL(ISNATLISTACTIVE(x1)) = 0
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 0
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 1
POL(lengthActive(x1)) = 1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x2
POL(takeActive(x1, x2)) = x2
POL(tt) = 0
POL(uLength(x1, x2)) = 1
POL(uLengthActive(x1, x2)) = 1
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 0
POL(uTake2Active(x1, x2, x3, x4)) = 0
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(isNatIList(x0), y1)) → ANDACTIVE(isNatIListActive(x0), mark(y1))
Used ordering: Polynomial interpretation [25]:
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATILISTACTIVE(x1)) = 1 + x1
POL(ISNATLISTACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatIListActive(x1)) = 1 + x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = x1
POL(lengthActive(x1)) = x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = x2
POL(uLengthActive(x1, x2)) = x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = 1 + x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATILISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatIListActive(y1))
ISNATLISTACTIVE(cons(length(x0), y1)) → ANDACTIVE(isNatListActive(x0), isNatListActive(y1))
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATILISTACTIVE(x1)) = x1
POL(ISNATLISTACTIVE(x1)) = x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = x1
POL(isNatList(x1)) = x1
POL(isNatListActive(x1)) = x1
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(takeActive(x1, x2)) = x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = 1 + x2
POL(uLengthActive(x1, x2)) = 1 + x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(and(isNatList(x0), y1)) → ANDACTIVE(isNatListActive(x0), mark(y1))
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = x2
POL(ISNATILISTACTIVE(x1)) = 1 + x1
POL(ISNATLISTACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = x1
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatActive(x1)) = x1
POL(isNatIList(x1)) = 1 + x1
POL(isNatIListActive(x1)) = 1 + x1
POL(isNatList(x1)) = 1 + x1
POL(isNatListActive(x1)) = 1 + x1
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(takeActive(x1, x2)) = x1 + x2
POL(tt) = 0
POL(uLength(x1, x2)) = 1 + x2
POL(uLengthActive(x1, x2)) = 1 + x2
POL(uTake1(x1)) = 0
POL(uTake1Active(x1)) = 0
POL(uTake2(x1, x2, x3, x4)) = x2 + x3 + x4
POL(uTake2Active(x1, x2, x3, x4)) = x2 + x3 + x4
POL(zeros) = 0
POL(zerosActive) = 0
isNatActive(x1) → isNat(x1)
isNatIListActive(x1) → isNatIList(x1)
zerosActive → zeros
mark(zeros) → zerosActive
isNatListActive(x1) → isNatList(x1)
uTake1Active(x1) → uTake1(x1)
mark(uTake1(x1)) → uTake1Active(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
lengthActive(x1) → length(x1)
mark(length(x1)) → lengthActive(mark(x1))
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
andActive(x1, x2) → and(x1, x2)
zerosActive → cons(0, zeros)
uTake1Active(tt) → nil
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
isNatActive(length(L)) → isNatListActive(L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatList(x1)) → isNatListActive(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(s(N)) → isNatActive(N)
andActive(tt, T) → mark(T)
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ Trivial-Transformation
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
MARK(and(isNat(x0), y1)) → ANDACTIVE(isNatActive(x0), mark(y1))
MARK(and(and(x0, x1), y1)) → ANDACTIVE(andActive(mark(x0), mark(x1)), mark(y1))
ISNATILISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatIListActive(y1))
ISNATLISTACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
ISNATILISTACTIVE(cons(N, IL)) → ISNATILISTACTIVE(IL)
ANDACTIVE(tt, T) → MARK(T)
MARK(and(tt, y1)) → ANDACTIVE(tt, mark(y1))
ISNATLISTACTIVE(cons(0, y1)) → ANDACTIVE(tt, isNatListActive(y1))
ISNATILISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatIListActive(y1))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATLISTACTIVE(cons(s(x0), y1)) → ANDACTIVE(isNatActive(x0), isNatListActive(y1))
MARK(and(x1, x2)) → MARK(x2)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Trivial-Transformation
ULENGTHACTIVE(tt, L) → LENGTHACTIVE(mark(L))
LENGTHACTIVE(cons(N, L)) → ULENGTHACTIVE(andActive(isNatActive(N), isNatListActive(L)), L)
mark(and(x1, x2)) → andActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(uTake1(x1)) → uTake1Active(mark(x1))
uTake1Active(x1) → uTake1(x1)
mark(uTake2(x1, x2, x3, x4)) → uTake2Active(mark(x1), x2, x3, x4)
uTake2Active(x1, x2, x3, x4) → uTake2(x1, x2, x3, x4)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(uLength(x1, x2)) → uLengthActive(mark(x1), x2)
uLengthActive(x1, x2) → uLength(x1, x2)
mark(tt) → tt
mark(0) → 0
mark(s(x1)) → s(mark(x1))
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(nil) → nil
andActive(tt, T) → mark(T)
isNatIListActive(IL) → isNatListActive(IL)
isNatActive(0) → tt
isNatActive(s(N)) → isNatActive(N)
isNatActive(length(L)) → isNatListActive(L)
isNatIListActive(zeros) → tt
isNatIListActive(cons(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
isNatListActive(nil) → tt
isNatListActive(cons(N, L)) → andActive(isNatActive(N), isNatListActive(L))
isNatListActive(take(N, IL)) → andActive(isNatActive(N), isNatIListActive(IL))
zerosActive → cons(0, zeros)
takeActive(0, IL) → uTake1Active(isNatIListActive(IL))
uTake1Active(tt) → nil
takeActive(s(M), cons(N, IL)) → uTake2Active(andActive(isNatActive(M), andActive(isNatActive(N), isNatIListActive(IL))), M, N, IL)
uTake2Active(tt, M, N, IL) → cons(mark(N), take(M, IL))
lengthActive(cons(N, L)) → uLengthActive(andActive(isNatActive(N), isNatListActive(L)), L)
uLengthActive(tt, L) → s(lengthActive(mark(L)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
ISNATLIST(take(N, IL)) → ISNAT(N)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → AND(isNat(N), isNatIList(IL))
TAKE(s(M), cons(N, IL)) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
LENGTH(cons(N, L)) → ISNATLIST(L)
ISNATLIST(cons(N, L)) → AND(isNat(N), isNatList(L))
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
TAKE(s(M), cons(N, IL)) → ISNAT(M)
ISNATILIST(cons(N, IL)) → AND(isNat(N), isNatIList(IL))
TAKE(s(M), cons(N, IL)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
LENGTH(cons(N, L)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
UTAKE2(tt, M, N, IL) → TAKE(M, IL)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
TAKE(0, IL) → UTAKE1(isNatIList(IL))
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ULENGTH(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → AND(isNat(N), isNatList(L))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(s(N)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → AND(isNat(N), isNatIList(IL))
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ISNATLIST(take(N, IL)) → ISNAT(N)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → AND(isNat(N), isNatIList(IL))
TAKE(s(M), cons(N, IL)) → AND(isNat(M), and(isNat(N), isNatIList(IL)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
LENGTH(cons(N, L)) → ISNATLIST(L)
ISNATLIST(cons(N, L)) → AND(isNat(N), isNatList(L))
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
TAKE(s(M), cons(N, IL)) → ISNAT(M)
ISNATILIST(cons(N, IL)) → AND(isNat(N), isNatIList(IL))
TAKE(s(M), cons(N, IL)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
LENGTH(cons(N, L)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
UTAKE2(tt, M, N, IL) → TAKE(M, IL)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
TAKE(0, IL) → UTAKE1(isNatIList(IL))
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ULENGTH(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → AND(isNat(N), isNatList(L))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(s(N)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNATLIST(take(N, IL)) → AND(isNat(N), isNatIList(IL))
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
ZEROS → ZEROS
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
ZEROS → ZEROS
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNAT(s(N)) → ISNAT(N)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
ISNATLIST(take(N, IL)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNAT(N)
ISNATLIST(cons(N, L)) → ISNATLIST(L)
ISNATILIST(cons(N, IL)) → ISNAT(N)
ISNAT(s(N)) → ISNAT(N)
ISNAT(length(L)) → ISNATLIST(L)
ISNATILIST(cons(N, IL)) → ISNATILIST(IL)
ISNATILIST(IL) → ISNATLIST(IL)
ISNATLIST(take(N, IL)) → ISNATILIST(IL)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ULENGTH(tt, L) → LENGTH(L)
LENGTH(cons(N, L)) → ULENGTH(and(isNat(N), isNatList(L)), L)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
TAKE(s(M), cons(N, IL)) → UTAKE2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
UTAKE2(tt, M, N, IL) → TAKE(M, IL)
and(tt, T) → T
isNatIList(IL) → isNatList(IL)
isNat(0) → tt
isNat(s(N)) → isNat(N)
isNat(length(L)) → isNatList(L)
isNatIList(zeros) → tt
isNatIList(cons(N, IL)) → and(isNat(N), isNatIList(IL))
isNatList(nil) → tt
isNatList(cons(N, L)) → and(isNat(N), isNatList(L))
isNatList(take(N, IL)) → and(isNat(N), isNatIList(IL))
zeros → cons(0, zeros)
take(0, IL) → uTake1(isNatIList(IL))
uTake1(tt) → nil
take(s(M), cons(N, IL)) → uTake2(and(isNat(M), and(isNat(N), isNatIList(IL))), M, N, IL)
uTake2(tt, M, N, IL) → cons(N, take(M, IL))
length(cons(N, L)) → uLength(and(isNat(N), isNatList(L)), L)
uLength(tt, L) → s(length(L))
From the DPs we obtained the following set of size-change graphs: